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Learning rate warmup for SGD and its variants has a long history, but is not that well-understood. Here
we explore one possible motivation for learning rate warmup in the context of Adam, which was originally
identified by Liu et al. [2019]. We simplify their analysis and reduce their “Rectified Adam” (RAdam)
algorithm to the following scheme with almost identical behaviour: multiply the learning rate at step
t by √

2

1 + βt
2

− 1,

where β2 is the Adam second moment hyperparameter.

1 Background
The adjustments made by Adam [Kingma and Ba, 2014] act on each parameter dimension independently, so
let’s consider a one-dimensional parameter θ. The Adam update rule may be written as

θt+1 ← θt +
α

√
vt + ε︸ ︷︷ ︸

adaptive
learning rate

mt,

where mt := ewmaβ1
(g)t, vt := ewmaβ2

(
g2
)
t
,1 and gt is the tth stochastic gradient. Here we have introduced

the notation for an exponentially-weighted moving average

ewmaβ (X)t :=
Xt + βXt−1 + β2Xt−2 + · · ·+ βt−1X1

1 + β + β2 + · · ·+ βt−1
.

Adam can be thought of as momentum SGD with an “adaptive learning rate”, which we have labeled in
the update rule above. The adaptive learning rate is a function of vt, which is an estimate of the expected
squared gradient. We would like the adaptive learning rate not to vary too wildy, which is why we usually
take β2 to be large (0.999 is the recommended default). (It’s fine for mt to vary wildly, as long as our steps
are sufficiently small, since the noise will cancel out over multiple steps, but we will not be data-efficient if
our adaptive learning rate varies too much, and we may be unstable if it is too large.)

However, towards the start of training, taking β2 to be large does not save us from the fact that we have
simply not yet seen many gradients, which means that our expected squared gradient estimator vt may have
high variance. As a result, RAdam takes the cautious approach of taking smaller steps towards the start of
training to account for this. More precisely, under the assumption of i.i.d. Gaussian gradients, it is possible
to analytically compute the effect of having not seen many gradients on the variance of the adaptive learning
rate, and RAdam downscales the adaptive learning rate to cancel this effect out.

1Kingma and Ba [2014] and Liu et al. [2019] denote these expressions by m̂t and v̂t and refer to them as bias-corrected
moment estimates.
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2 The variance of an EWMA
Thus learning rate warmup may be motivated by the effect of t on the variance of the adaptive learning
rate, which is a function of vt = ewmaβ2

(
g2
)
t
. We would therefore like to analyze the variance of a generic

EWMA. Assuming X1, . . . , Xt are i.i.d. with variance σ2, we may use the fact that Var [aX] = a2 Var [X]
and that Var [X + Y ] = Var [X] + Var [Y ] for independent X and Y to deduce that

Var [ewmaβ (X)t] =
σ2 + β2σ2 + · · ·+ β2(t−1)σ2

(1 + β + · · ·+ βt−1)
2 =

σ2

1−βt

1+βt
1+β
1−β

.

We refer to the denominator of the final expression here as the effective sample size2 of the EWMA. This
terminology is motivated by the fact that, in a similar fashion, the variance of the unweighted average of
X1, . . . , Xt

Var

[
X1 + · · ·+Xt

t

]
=

σ2 + · · ·+ σ2

t2
=

σ2

t
.

Note that the effective sample size of the above EWMA is roughly t when t is small, and converges to
1+β
1−β as t tends to ∞:

So under the assumption of i.i.d. gradients,

Var [vt]

Var [v∞]
=

1 + βt
2

1− βt
2

,

where by an abuse of notation Var [v∞] := limt→∞ Var [vt] . In other words, the effect of t being finite on the
variance of vt is to multiply it by 1+βt

2

1−βt
2
.

3 Learning rate warmup: RAdam
The RAdam update rule may be written as

θt+1 ← θt + rt
α

√
vt + ε︸ ︷︷ ︸

adaptive
learning rate

mt,

where mt and vt are as above, and rt is a function of t called the “variance rectification term”. In other
words, it is the Adam update rule with the adaptive learning rate multiplied by rt, which has the effect of
learning rate warmup. Occasionally rt is undefined, in which case RAdam falls back to momentum SGD.

The variance rectification term rt is chosen in such a way that the variance of the adaptive learning rate
is constant, and rt → 1 as t→∞. Since the variance of the adaptive learning rate is r2tα

2 Var
[

1√
vt+ε

]
, this

2https://en.wikipedia.org/wiki/Effective_sample_size
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is equivalent (approximating ε as 0) to taking

rt =

√√√√√Var
[

1√
v∞

]
Var

[
1√
vt

] .

Under the assumption of i.i.d. Gaussian gradients, Liu et al. [2019] show that this is approximately

rt =

{√
(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

, if ρt > 4

undefined, if ρt ≤ 4
,

where
ρt = ρ∞ −

2tβt
2

1− βt
2

and ρ∞ =
2

1− β2
− 1.

4 Simplifying RAdam
We may bypass much of the analysis of Liu et al. [2019] by simply using the approximation

Var

[
1
√
vt

]
≈ cVar [vt] ,

where c does not depend on t. This holds in the limit as the effective sample size of vt tends to ∞ because
of the delta method3, and in practice it is a good approximation as long as t is not very small. Thus we may
instead use the variance rectification term

rsimple
t =

√
Var [v∞]

Var [vt]
=

√
1− βt

2

1 + βt
2

=

√
2

1 + βt
2

− 1,

as originally claimed. Here we have assumed that the gradients are i.i.d., but did not need to assume that
they are Gaussian (though the above approximation is less realistic than that of Gaussian gradients).

Note that rsimple
t is the square root of the ratio of the effective sample size of vt to the effective sample

size of v∞ (i.e., the limit of the effective sample size of vt as t→∞). In other words, it cancels out the effect
of t being finite on the variance of vt, in the sense that Var

[
rsimple
t vt

]
is constant (under the assumption of

i.i.d. gradients) and rsimple
t → 1 as t→∞.

In practice, rt and rsimple
t are very close:

Moreover, for typical values of β2, rt is only undefined (causing RAdam to fall back to SGD momentum)
when t ≤ 4. So the two versions of RAdam should have almost identical performance.

Between the two versions of RAdam, my personal recommendation is to use the simplified version. The
original version uses more accurate approximations, but the simplified version uses a more understandable

3https://en.wikipedia.org/wiki/Delta_method
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function, has a more natural interpretation in terms of effective sample sizes, and does not need to fall back
to momentum SGD. Falling back to momentum SGD makes the algorithm more complex, and it would make
more theoretical sense to me to instead take rt = 0.

When I asked Liu about my simplification, they agreed with my analysis, but disagreed with my recom-
mendation, saying (notation adapted to context):

Comparing these two approximations, I feel our approximation is better as it is more accurate.
The main difference is that we are trying to estimate Var

[√
1
vt

]
as a whole, instead of estimating

Var
[√

vt
]
. The adaptive learning rate is the inverse of √vt, whose variance (i.e. Var

[√
1
vt

]
)

is hard to estimate from Var
[√

vt
]
. At the same time, if gi ∼ N (0, 1), then Var

[
1√

g2
0+g2

1

]
is divergent, while Var

[√
g20 + g21

]
is not. Since the adaptive learning rate is designed as the

inverse, I think it’s better to use the current approximation. Meanwhile, I agree with you that
your approximation is more simple, and in most cases, I feel these two approximations should
result in a similar empirical performance.

5 Discussion
We have explored a potential problem with Adam, whereby the variance of the adaptive learning rate is too
high towards the start of training due to a lack of gradient samples. We have seen that this can be resolved
using learning rate warmup, by multiplying the learning rate at step t by√

2

1 + βt
2

− 1,

where β2 is the Adam second moment hyperparameter.
OpenAI et al. [2019] used a learning rate of 0 for the first several hours of training after surgery, allowing

the adaptive learning rate to settle down before actually changing the network. This provides some evidence
that the variance of adaptive learning rate is genuinely a problem in practice.

None of this analysis precludes the possibility that there are other reasons to use learning rate warmup.
Indeed, given that learning rate warmup is older than Adam, it seems highly likely that there are other
reasons. So this scheme is probably best thought of simply as a way to warm up the learning rate gradually
over the course of around the first 5

− ln(β2)
≈ 5

1−β2
steps (the point at which rsimple

t first exceeds around
0.99). This is justified by the analysis presented, but may not be justified by other considerations.

Note that this scheme couples the Adam hyperparameter β2 to the speed of learning rate warmup, so
extra care should be taken under this scheme when adjusting β2.
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