
Lebesgue measurability and large cardinals



1 Introduction

Lebesgue measure is motivated by the following idea. It is clear that by the “length” of
an interval (a, b) or [a, b] we mean b− a. Can we extend this notion to many other subsets
of R in a natural way? In other words, can we find some µ : S → [0,∞] for some “large”
subset S ⊆ P (R) with the following properties?

1. if a, b ∈ R with a < b, then µ ((a, b)) = µ ([a, b]) = b− a

2. (monotonicity) if A,B ∈ S with A ⊆ B, then µ (A) ≤ µ (B)

3. (countable additivity) if (Ai)i∈I is a countable collection of pairwise disjoint members
of S, then µ

(⋃
i∈I Ai

)
=
∑

i∈I µ (Ai)

4. (translation invariance) if x ∈ R and A ∈ S, then µ ({x+ a : a ∈ A}) = µ (A)

Definition. The outer Lebesgue measure of a set A ⊆ R is

µ∗ (A) := inf

{
∞∑
i=0

(bi − ai) : ai, bi ∈ R and ai < bi ∀i ∈ ω, and A ⊆
∞⋃
i=0

(ai, bi)

}
.

A is (Lebesgue) measurable iff µ∗ (A) = µ∗ (A ∩B) +µ∗ (A ∩ (R \B)) for every B ⊆ R, in
which case the Lebesgue measure of A is µ (A) := µ∗ (A).

It can be shown that Lebesgue measure satisfies properties 1–4, and that many
naturally-occurring sets are Lebesgue measurable, such as Borel sets (see section 2.3).
For the proof we refer the reader to Carathéodory’s extension theorem.

However, the following construction shows that we can never achieve S = P (R). In
particular, not every set of reals is Lebesgue measurable.

Example (Vitali). Define the equivalence relation ∼ on R by x ∼ y iff y − x ∈ Q. By
the axiom of choice, let A ⊆ [0, 1] contain exactly one member from each equivalence class,
and suppose for contradiction A ∈ S.

Write Aq = {a+ q : q ∈ Q} for each q ∈ Q, where Q = Q∩ [−1, 1]. Then by translation
invariance, µ (Aq) = µ (A) for each q ∈ Q. Now (Aq)q∈Q is a collection of pairwise disjoint

sets, so by countable additivity µ
(⋃

q∈QAq

)
=
∑

q∈Q µ (Aq) =
∑

q∈Q µ (A) = 0 or ∞.

But [0, 1] ⊆
⋃
q∈QAq ⊆ [−1, 2], so by monotonicity 1 ≤ µ

(⋃
q∈QAq

)
≤ 3. Contradic-

tion.

This construction uses the axiom of choice (AC). Thus we can still hope that, in some
sense, every explicitly describable set of reals is measurable.

It may be natural to ask: is it consistent with ZF that every set of reals is Lebesgue
measurable? But this question is not really appropriate, since AC is used in the proof that
Lebesgue measure is countably additive. Indeed, if ZF is consistent then it is consistent
with ZF that R is a countable union of countable sets [10, p. 142], in which case if S = P (R)
then countable additivity implies µ (R) = 0!

However, only a weak form of AC is required to prove the basic properties of Lebesgue
measure. The following statement follows from AC via Zorn’s lemma, and implies the axiom
of countable choice.
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Definition. The axiom of dependent choice (DC) is the statement that if X is a non-empty
set and R is a binary relation on X such that for all x ∈ X there exists y ∈ X with xRy,
then we can choose a sequence (xn)n∈ω from X with x0Rx1Rx2R . . . .

This axiom is sufficient to develop the theory of Lebesgue measure and for most of real
analysis. By contrast, it is not enough for Vitali’s example: since each equivalence class
was countable, we made 2ℵ0 choices, each between ℵ0 options.

The purpose of this essay, then, is to address the following.

Question. Is it consistent with ZF + DC that every set of reals is Lebesgue measurable?

2 Solovay’s model

Surprisingly, this question is connected to the existence of a strongly inaccessible cardinal.

Notation. Denote by LM the statement that every set of reals is Lebesgue measurable.
Denote by I the statement that there is a strongly inaccessible cardinal.

This chapter is devoted to proving the following positive answer to the above question.

Theorem 1. If ZFC + I is consistent, then ZF + DC + LM is consistent.

To prove this, we will use forcing to prove the following in ZFC.

Theorem 2 (Solovay [4]). Suppose there is a countable transitive ∈-model of ZFC + I.
Then there is a countable transitive ∈-model of ZF + DC + LM.

To prove Theorem 1 from this, we follow the approach of Kunen [1, p. 245]. This
requires a modified version of Theorem 2, which will easily be seen to follow from the same
proof. The following is in fact a theorem scheme rather than a theorem of ZFC (like the
reflection principle).

Theorem 2′. For each finite Ω ⊆ ZF, there is a finite Λ ⊆ ZFC such that the following is
a theorem of ZFC.

Suppose there is a countable transitive ∈-model of Λ + I. Then there is a countable
transitive ∈-model of Ω + DC + LM.

Proof of Theorem 1 from Theorem 2′. Suppose ZF + DC + LM is inconsistent. Then Ω +
DC + LM is inconsistent for some finite Ω ⊆ ZF, and moreover this fact is provable in ZFC
since it is witnessed by a finite proof of ⊥. Choose a corresponding finite Λ ⊆ ZFC as in
Theorem 2′.

In this paragraph we work in ZFC + I. By the reflection principle, Λ + I has a ∈-model,
which by the downward Löwenheim–Skolem theorem has a countable elementary submodel.
This is a countable ∈-model of Λ+I, but it need not be transitive. However, since it satisfies
the axiom of extensionality and ∈ is well-founded, we may apply the Mostowski collapse
lemma to obtain an isomorphic transitive ∈-model. This is a countable transitive ∈-model
of Λ + I, so by Theorem 2′ there is a countable transitive ∈-model of Ω + DC + LM. So by
the soundness theorem, Ω + DC + LM is consistent.

Thus it is possible in ZFC + I to prove both the consistency and the inconsistency of the
theory Ω + DC + LM. So ZFC + I is inconsistent.
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Outline of proof of Solovay’s theorem. Working in ZFC, we will begin with a countable
transitive ∈-model M of ZFC + I in which (κ is a strongly inaccessible cardinal)M .

We will then use a forcing poset known as the “Lévy collapse” to pass to a forcing
extension M [G] in which all ordinals smaller than κ are “collapsed” to ω.

Finally, we will consider the submodel HOD∗M [G] given by those sets that are “heredi-

tarily ordinal-sequence-definable in M [G]”, and show that this is a transitive ∈-model of
ZF + DC + LM.

For the rest of this chapter, then, we work in ZFC unless stated otherwise.

2.1 Ordinal definability

Although in the proof of Solovay’s theorem we will need the notion of definability by an
infinite sequence of ordinals, it will be instructive to first consider the notion of definability
by finitely many ordinals. We use ideas from Kunen [1, pp. 145–147].

In this section, assume that M is a transitive ∈-model of ZF. By this we mean in
particular that M is a set.

Definition. We say a ∈M is ordinal definable in M , and write a ∈ ODM , iff there exists a
formula φ (x1, x2, . . . , xn, y)[1] in the language of set theory and α1, α2, . . . , αn ∈ OnM such
that φ (α1, α2, . . . , αn, a)M and a is unique in M with this property.

We say a ∈ M is hereditarily ordinal definable in M , and write a ∈ HODM , iff
TC ({a}) ⊆ ODM .

Proposition 1. HODM is a transitive ∈-model of ZF.

The proof of Proposition 1 will be very similar to that of the corresponding result for
forcing extensions, in the following sense. Since HODM is transitive, in several cases, the
fact that an axiom holds in HODM will follow from the fact that it holds in M , together
with a simple formula provided by the axiom itself to demonstrate ordinal definability in
M . The difficulty will arise when we reach the axiom scheme of separation, and concerns
the definability of ODM in M .

To illustrate the difficulty, let b ∈ HODM and φ (x) be a formula in the lan-

guage of set theory, and let c =
{
d ∈ b : φ (d)HODM

}
. Why should c ∈ ODM? We

would like to define c from b by the formula ∀x
(
x ∈ c⇔

(
ψ (x) ∧ φ (x)HODM

))
, where

(∀x (ψ (x)⇔ x ∈ b))M . But suppose φ (x) has the form ∀yϕ (x, y). Then φ (x)HODM has the

form (∀y ∈ HODM)
(
ϕ (x, y)HODM

)
, i.e. ∀y

(
TC ({y}) ⊆ ODM ⇒ ϕ (x, y)HODM

)
. How

do we know that there is a formula χ (x) such that for every a ∈M , a ∈ ODM iff χ (a)M?
We certainly can’t express the above definition of ODM in this fashion directly without first
constructing a formula ξ (x) such that, for every formula ζ in the language of set theory,
(ξ (pζq)⇔ ζ)M , which would contradict Tarski’s undefinability theorem. We nonetheless
have the following result, which is analogous to the definability lemma for forcing exten-
sions.

[1]It is implicit that the free variables of a formula φ (x1, x2, . . . , xn) are exactly x1, x2, . . . , xn.
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Lemma 1. There exists a formula χ (x) in the language of set theory such that for every
a ∈M ,

a ∈ ODM iff χ (a)M .

The key idea of Lemma 1 is to use the reflection principle in M .
Working in ZF, if β ∈ On then Vβ is a set. Therefore using model theory we may express

by a formula DEF (β, pφ (x1, x2, . . . , xn, y)q, (α1, α2, . . . , αn) , a) the property that: β ∈ On;
a ∈ Vβ; φ (x1, x2, . . . , xn, y) is a formula in the language of set theory; α1, α2, . . . , αn ∈
On ∩ Vβ; φ (α1, α2, . . . , αn, a)Vβ ; and a is unique in Vβ with this property.

Let χ (x) be the formula

∃β∃m∃αDEF (β,m, α, x) .

Proof of “if”. Suppose a ∈ M with χ (a)M . Then there exist β,m, α ∈ M with
DEF (β,m, α, a)M and, by definition of DEF, a is unique in M with this property. Write
m = pφ (x1, x2, . . . , xn, y)q and α = (α1, α2, . . . , αn). Then we can define a in M using DEF
together with β,m, α1, α2, . . . , αn, so it is sufficient to prove that m ∈ OnM . But without
loss of generality our system for encoding formulas is such that m ∈ ωM .

Proof of “only if”. Suppose a ∈ ODM , say by the formula φ (x1, x2, . . . , xn, y) and
α1, α2, . . . , αn ∈ OnM . Since M is a model of ZF, we may apply the reflec-
tion principle to obtain β ∈ OnM with α1, α2, . . . , αn < β and a ∈ (Vβ)M

such that
(
φ (α1, α2, . . . , αn, a)Vβ and a is unique in Vβ with this property

)M
. Since

α1, α2, . . . , αn ∈ (Vβ)M , it follows that DEF (β, pφ (x1, x2, . . . , xn, y)q, (α1, α2, . . . , αn) , a)M

and hence χ (a)M .

In view of Lemma 1, we define the classes OD = {x : χ (x)} and HOD =
{x : TC ({x}) ⊆ OD}, so that by Lemma 1, ODM = ODM and so HODM = HODM ,
since the formula y ∈ TC ({x}) is absolute for M .

We proceed to the proof of Proposition 1. Most of this should be viewed by the reader as
a sequence of trivial checks: after all, we are checking that set-theoretic operations defined
by certain formulas can be carried out in HODM , which is the kind of thing specifically
allowed by definition ODM ; and since HODM = HODM , any difficulties of the character
described above will be solved by relativising a formula to HOD.

Proof of Proposition 1. First note that since M is transitive and HODM is defined as a
subset of M by a hereditary property, HODM is transitive, and it is a ∈-model by definition.
So the axioms of extensionality and foundation hold in M .

Next, clearly OnM ⊆ HODM , so by the axioms of empty set and infinity in M and
absoluteness, these axioms also hold in M .

For the axiom of pairing, suppose a, b ∈ HODM . By the axiom of pairing in M ,
{a, b} ∈ M . Moreover, the axiom itself provides us with a formula defining {a, b} in M
from a and b, so {a, b} ∈ ODM and hence {a, b} ∈ HODM . The axiom of union follows
similarly.

It is only the remaining axioms (power set, separation and replacement) that require
Lemma 1. For the axiom of power set, let a ∈ HODM , say defined in M by the formula
φ (x1, x2, . . . , xn, y) and α1, α2, . . . , αn ∈ OnM . It is sufficient to prove that P (a)∩HODM ∈
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ODM . First of all, by Lemma 1 this set is in M by applying the axiom scheme of separation
in M to P (a)M = P (a) ∩M . Then, by Lemma 1, P (a) ∩HODM is defined in M by the
formula ∀z (z ∈ y ⇔ ∃w (φ (x1, x2, . . . , xn, w) ∧ z ⊆ w ∧ z ∈ HOD)) and α1, α2, . . . , αn.

For the axiom scheme of separation, we follow the discussion preceding Lemma 1.
Let b ∈ HODM and φ (x) be a formula in the language of set theory, and let c ={
d ∈ b : φ (d)HODM

}
. By Lemma 1, the formula φ (x)HODM is equivalent to

(
φ (x)HOD

)M
.

So by the axiom scheme of separation in M , c ∈ M , and the axiom itself together with
φ (x)HOD provide us with a formula defining c in M . So c ∈ ODM and hence c ∈ HODM .
The axiom scheme of replacement follows similarly by relativising a formula defining a
function in HODM to HOD.

Remarks.

1. In accordance with the modified version of Solovay’s theorem (Theorem 2′), in veri-
fying any given axiom of ZF in HODM we only used finitely many axioms of ZF in
M . (Although Lemma 1 used infinitely many instances of the reflection principle for
M , only finitely many of them were ever needed for any single axiom.)

2. HODM is also a model of AC, even if M is not [1, p. 147].

3. We have been working with a set model of ZF. However, even though HOD is a
proper class, we could easily adapt the proof that HODM is a model of ZFC to prove
the following theorem scheme: for each axiom φ of ZFC, φHOD is a theorem of ZF.
This provides us with a proof of the consistency of ZFC relative to ZF, since it shows
that if ψ is a theorem of ZFC, then ψHOD is a theorem of ZF by relativising the proof
to HOD.

At last we introduce the notion needed in the proof of Solovay’s theorem.

Definition. We say a ∈ M is ordinal-sequence-definable in M , and write a ∈ OD∗M , iff
there exists a formula φ (x, y) in the language of set theory and f ∈M with f : ω → OnM

such that φ (f, a)M and a is unique in M with this property.
We say a ∈ M is hereditarily ordinal-sequence-definable in M , and write a ∈ HOD∗M ,

iff TC ({a}) ⊆ OD∗M .

All we will need later from this section are the following two results.

Theorem 3. Suppose in addition that M is a model of DC. Then HOD∗M is a transitive
∈-model of ZF + DC.

To prove this, we follow the approach of Jech [2, pp. 519–520] and use the lemma that
follows. Later, this lemma will allow us to show that every real and every Borel set of M
lies in HOD∗M .

Lemma 2. Suppose in addition that M is a model of DC, and let g ∈M be a function on
ω with values in OD∗M . Then g ∈ OD∗M .
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Proof of Theorem 3 from Lemma 2. The proof that HOD∗M is a transitive ∈-model of ZF
is almost identical to that for HODM .

For DC, let a,R ∈ HOD∗M satisfy the hypotheses of DC. By DC in M , there exists a
function g ∈ M on ω with values in a such that g (0)Rg (1)Rg (2)R . . . . By Lemma 2,
g ∈ OD∗M and hence g ∈ HOD∗M .

Proof of Lemma 2. If we were to replace ω in Lemma 2 by n ∈ ω, then it would become
trivial by taking a finite conjunction of formulas. In place of an “infinite conjunction”, we
must quantify over ω. Thus we would like to somehow have a single formula with which
we can define in M every member of OD∗M by a different sequence of ordinals in M . To
achieve this we delve further into the ideas of Lemma 1.

Recall the definition of DEF used to define χ (x) for Lemma 1, and define DEF∗ anal-
ogously. Then by the proof of “only if” in Lemma 1, for every a ∈ OD∗M there exist
β ∈ OnM , m ∈ OnM [2] and f : ω → OnM such that DEF∗ (β,m, f, a)M and, by definition
of DEF∗, a is unique in M with this property. Denote by f ′ the sequence obtained by
appending β and m to the front of f , and define the formula ψ (x, y) so that ψ (f ′, y) is
equivalent to DEF∗ (β,m, f, y).

Thus we have a single formula ψ (x, y) with which we can define in M every a ∈ OD∗M
by some sequence f ′a of ordinals in M . Turning now to g, by the axiom of countable choice

(which follows from DC) in M , the “2-dimensional sequence” of ordinals
(
f ′g(n) (k)

)
(n,k)∈ω×ω

lies in M . We can now use ψ and quantification over ω to define g in M by this “2-
dimensional sequence”. To show that g is definable in M by a “1-dimensional sequence”
of ordinals in M , we need only observe that M contains a bijection ω × ω → ω, a notion
which is absolute for M .

2.2 The Lévy collapse

The Lévy collapse is the type of forcing poset used in the proof of Solovay’s theorem. We
assume the reader is familiar with the basics of forcing from Part III Set Theory, but adopt
the convention that forcing posets are ordered so as to have maximal (rather than minimal)
elements. We use ideas from Kanamori [3, pp. 127–129, 140].

In this section, assume that M is a countable transitive ∈-model of ZFC.
Recall the forcing poset Fn (λ, κ) := {p ∈ [λ ⇁ κ] : |p| < ℵ0} ,[3] ordered by p ≤ q iff

p ⊇ q, where λ, κ ∈M with (λ and κ are infinite cardinals)M and λ < κ as ordinals. Recall
[1, p. 263] that if G is a Fn (λ, κ)-generic filter over M ,[4] then

⋃
G is a surjection λ→ κ,

so that κ is “collapsed” onto λ in M [G]. The Lévy collapse is a generalisation of this idea
allowing us to collapse multiple ordinals at once.

Definition. Let λ be a regular cardinal and S ⊆ On. The Lévy collapse [5] Col (λ, S) is the

[2]Again we assume without loss of generality that formulas are encoded as members of ω.
[3][λ ⇁ κ] denotes the set of partial functions from λ to κ, viewed as a set of ordered pairs.
[4]Of course by “Fn (λ, κ)-generic over M” we mean the same as “Fn (λ, κ)

M
-generic over M”.

[5]Other authors reserve the term Lévy collapse for the special case in which (S is a cardinal)M and
λ < S as ordinals.
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forcing poset {
p ∈

∏
α∈S

[λ ⇁ α] : |p| < λ

}
.

View this product as a subset of [S × λ ⇁
⋃
S], and order Col (λ, S) by p ≤ q iff p ⊇ q.

In what follows, let λ ∈M with (λ is a regular cardinal)M and S ∈M with S ⊆ OnM .
We begin by checking that the ordinals in S are indeed collapsed to λ when forcing with

Col (λ, S)M .

Proposition 2. Let G be a Col (λ, S)-generic filter over M . Then for every α ∈ S,

(|α| ≤ λ)M [G].

Proof. Fix α ∈ S \{0}. Let Gα be the projection of G onto the factor [λ ⇁ α] in the above
product, and let fα =

⋃
Gα. Clearly fα ∈ M [G], and fα ∈ [λ ⇁ α] since G is directed.

We show that fα is a surjection λ→ α.

To see that fα is total, let x ∈ λ. Then
{
p ∈ Col (λ, S)M : (α, x) ∈ dom (p)

}
is a dense

subset of Col (λ, S)M lying in M , so x ∈ dom (fα) .[6]

To see that fα is surjective, let y ∈ α. Then
{
p ∈ Col (λ, S)M : (∃x ∈ λ) (y = p (α, x))

}
is a dense subset of Col (λ, S)M lying in M , so (∃x ∈ λ) (y = fα (x)).

We now introduce a fundamental property of the Lévy collapse. The following definition
and proposition are based on Kanamori [3, p. 129] and Kunen [1, pp. 255, 275].

Definition. A forcing poset P is called weakly homogeneous iff for every p, q ∈ P there is
an order-automorphism π of P such that π (p) and q are compatible.

Proposition 3.

1. ( zero-one law) Suppose P ∈ M is a forcing poset with maximal element 1 and
(P is weakly homogeneous)M . Let φ (x1, x2, . . . , xn) be a formula in the language
of set theory and a1, a2, . . . , an ∈ M . Then either 1 
 φ (ǎ1, ǎ2, . . . , ǎn)[7] or
1 
 ¬φ (ǎ1, ǎ2, . . . , ǎn).

2. (Col (λ, S) is weakly homogeneous)M .

Proof.

1. First we claim that if p ∈ P with p 
 φ (ǎ1, ǎ2, . . . , ǎn) and π is an order-
automorphism of P , then π (p) 
 φ (ǎ1, ǎ2, . . . , ǎn). To see this, let H be a P -generic
filter over M containing π (p). Then π−1 (H) is a P -generic filter over M containing p,

so φ (a1, a2, . . . , an)M[π−1(H)]. Now π induces a bijection MP →MP fixing ǎ for every
a ∈ M , which in turn induces a bijection M [π−1 (H)] → M [H] fixing M pointwise,
and since π is an order-automorphism this bijection is a ∈-isomorphism. It follows
that φ (a1, a2, . . . , an)M [H]. This proves the claim.

[6]Note that a P -generic filter intersects every dense subset of P (not just the open dense subsets) [1,
p. 269].

[7]ǎ denotes the canonical P -name for a ∈M .
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Now suppose for contradiction neither 1 
 φ (ǎ1, ǎ2, . . . , ǎn) nor 1 

¬φ (ǎ1, ǎ2, . . . , ǎn). Then there must be P -generic filters H1, H2 over M with

φ (a1, a2, . . . , an)M [H1] and ¬φ (a1, a2, . . . , an)M [H2]. So by the truth lemma for forcing
extensions there exist p, q ∈ P with p 
 φ (ǎ1, ǎ2, . . . , ǎn) and q 
 ¬φ (ǎ1, ǎ2, . . . , ǎn).

Now by weak homogeneity, let π be an order-automorphism of P such that π (p) and
q are compatible, say with common lower bound r. Let H be a P -generic filter over
M containing r, so that π (p) , q ∈ H. Then by the claim, π (p) 
 φ (ǎ1, ǎ2, . . . , ǎn).
But q 
 ¬φ (ǎ1, ǎ2, . . . , ǎn), so no P -generic filter over M can contain both π (p) and
q. This contradicts π (p) , q ∈ H.

2. We carry out the proof inside M . Let p, q ∈ Col (λ, S). Define Xp =
{x ∈ λ : (∃α ∈ S) ((α, x) ∈ dom (p))} and define Xq similarly. Then |Xp| , |Xq| < λ
since |p| , |q| < λ, so there exists a bijection f : λ → λ such that f (Xp) is disjoint
from Xq. This induces an order-automorphism π of P such that dom (π (p)) is disjoint
from dom (q), which implies that π (p) and q are compatible. So π is as required. �

Having established these general properties of the Lévy collapse, we now turn to the
special case to be used in the proof of Solovay’s theorem, in which λ = ω and S is a strongly
inaccessible cardinal in M . In what follows, then, assume that κ ∈M with (κ is a strongly
inaccessible cardinal)M .

The final basic property of Col (ω, κ)M that we need is the following.

Proposition 4. (Col (ω, κ) satisfies the κ-chain condition)M .[8]

To prove this, we follow the approach of Kanamori [3, p. 127] and use the ∆-system
lemma. The reader should be familiar with the case θ = ℵ1.

Lemma 3 (∆-system lemma). Let θ be an uncountable regular cardinal, and let A be a
family of finite sets with |A| = θ. Then there exists B ⊆ A with |B| = θ and a finite set r
such that for all a, b ∈ B with a 6= b, a ∩ b = r.

Proof. The proof is very similar to the case θ = ℵ1. See Kunen [1, p. 166] for details.

Proof of Proposition 4. We carry out the proof inside M . Suppose A ⊆ Col (ω, κ) with
|A| ≥ κ. Now apply the ∆-system lemma with θ = κ and A ⊆ dom (A) to obtain B ⊆ A
with |B| = κ and a finite set r such that for all p, q ∈ B with p 6= q, dom (p)∩dom (q) = r.
Write r = {(α1, n1) , (α2, n2) , . . . , (αk, nk)}. Then for every p ∈ B, the image of p �r is a
subset of

⋃k
i=1 αi < κ. So since |B| = κ, by the pigeonhole principle there exist p, q ∈ B

with p�r= q �r. Then p and q are compatible, so A is not an antichain.

We are now ready to study the forcing extensions produced using Col (ω, κ)M . In what
follows, then, let G be a Col (ω, κ)-generic filter over M .

Proposition 2 then tells us that every ordinal less than κ is collapsed to a countable
ordinal in M [G], so κ ≤ ℵM [G]

1 . Our next observation is that κ is not itself collapsed to a

countable ordinal in M [G], from which it follows that κ ≥ ℵM [G]
1 . Strictly speaking, this

second inequality will not be needed in the proof of Solovay’s theorem, but we record it
nonetheless since it follows easily from Proposition 4.

[8]A poset P satisfies the κ-chain condition iff all its antichains have cardinality less than κ. Here, an
antichain of P is a set of pairwise incompatible members of P .
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Corollary 1. κ = ℵM [G]
1 .

Proof. Recall that if P ∈ M is a forcing poset with (P satisfies the countable chain
condition)M , then P preserves cardinals ≥ ℵ0. By a very similar proof (using the fact
that (κ is regular)M), it follows from Proposition 4 that Col (ω, κ)M preserves cardinals
≥ κ [1, p. 291].

In particular, (κ is a cardinal)M [G]. But κ 6= ωM [G] by absoluteness, so κ ≥ ℵM [G]
1 . To

complete the proof, by Proposition 2 every ordinal less than κ is collapsed to a countable
ordinal in M [G], so κ ≤ ℵM [G]

1 .

The remaining results in this section concern intermediate extensions.

Notation. Let x ∈ M [G]. Denote by M [x] the smallest subset of M [G] such that M ⊆
M [x], x ∈M [x] and M [x] is a ∈-model of ZFC.

The intermediate extensions we are concerned with are those of the form M [f ] for
f ∈ M [G] a sequence of ordinals. These will be important in the proof of Solovay’s
theorem when we consider ordinal-sequence-definability.

We begin by examining the behaviour of κ in these intermediate extensions. The fol-
lowing result should be contrasted with Corollary 1. All we will need from it later, however,

is that
(
2ℵ0
)M [f ]

< κ.

Theorem 4. Let f ∈ M [G] with f : ω → OnM . Then (κ is a strongly inaccessible
cardinal)M [f ].

To prove this, we will use the following lemma to relate our intermediate extension to
a forcing extension.

Lemma 4. Let f ∈ M [G] with f : ω → OnM . Then there exists α < κ such that
M [f ] ⊆M [H], where H = G ∩ Col (ω, α)M is a Col (ω, α)-generic filter over M .

We follow the proof given in Kanamori [3, pp. 127–128]. The idea is to choose maximal
antichains forcing the value of f (n) for each n ∈ ω and then apply the κ-chain condition.

Proof. Let f ∈M be a Col (ω, κ)M -name whose interpretation relative to G is f .
For each n ∈ ω, let An be a maximal antichain of Col (ω, κ)M such that for each p ∈ An

there exists β ∈ OnM with p 
 f (n) = β. Note that by the definability lemma we may
assume (An)n∈ω ∈M , since we avoided referencing f in the definition of (An)n∈ω.

Let n ∈ ω. We claim that there exists a unique p ∈ G ∩ An. To see this, ob-
serve that by the truth lemma, every q ∈ Col (ω, κ)M is compatible with some r ∈
Col (ω, κ)M satisfying r 
 f (n) = β for some β ∈ OnM . It follows that the set{
q ∈ Col (ω, κ)M : q ≤ r for some r ∈ An

}
of predecessors of members of An is a dense sub-

set of Col (ω, κ)M lying in M . So since G is Col (ω, κ)-generic over M and upward-closed,
there exists p ∈ G ∩ An, which must be unique since An is an antichain.

Let A =
⋃
n∈ω An. For each p ∈ A, let αp =

⋃
(β,m)∈dom(p) β+1 < κ, and let α =

⋃
p∈A αp.

Then dom (p) ⊆ α × ω for every p ∈ A by construction. So letting H = G ∩ Col (ω, α)M ,
we have G∩An = H ∩An for each n ∈ ω. This allows us to define f in M [H] by declaring
that, for each n ∈ ω, p 
 f (n) = f (n), where p is the unique member of H ∩An. Here we
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are using the definability lemma and the fact that (An)n∈ω ∈ M . Thus f ∈ M [H] and so
M [f ] ⊆M [H].

To see that α < κ, by Proposition 4, (|An| < κ)M for each n ∈ ω, and hence (|A| < κ)M .
So by definition of α, it follows from the fact that (κ is regular)M that α < κ.

It remains to show that H is a Col (ω, α)-generic filter over M . That H is a filter
of Col (ω, α)M follows easily from the fact that G is a filter of Col (ω, κ)M . To see that
H is Col (ω, α)-generic over M , observe that if D ∈ M is a dense subset of Col (ω, α)M ,

then D ×
{
p ∈

∏
α≤β<κ [ω ⇁ β] : |p| < ℵ0

}
(viewed as a subset of [κ× ω ⇁ κ]) is a dense

subset of Col (ω, κ)M lying in M whose intersection with Col (ω, α)M is D. Now apply
Col (ω, κ)-genericity of G over M .

The usefulness of this result in the proof of Theorem 4 comes from the fact that if α < κ
then (|Col (ω, α)| < κ)M . We use ideas from Jech [2, p. 226].

Proof of Theorem 4. First note that by Corollary 1, (κ is a regular cardinal)M [G]. But this
is a statement about the non-existence of certain injections in M [G], so there cannot be
such injections in M [f ] either, so (κ is a regular cardinal)M [f ].

To see that (κ is a strong limit)M [f ], choose α < κ as in Lemma 4 and let H =
G ∩ Col (ω, α). Since M [f ] ⊆ M [H], by a similar argument to the one in the above
paragraph it is sufficient to prove that (κ is a strong limit)M [H]. So let ν < κ with (ν is a
cardinal)M [H].

Then every subset X ⊆ ν with X ∈M [H] has a corresponding Col (ω, α)-name X ∈M
of the form X = {(px, x̌) : x ∈ ν}. This defines an injection

P (ν)M [H] →
{
{(px, x̌) : x ∈ ν} ∈MCol(ω,α)

}M
.

So (2ν)M [H] ≤ (|Col (ω, α)|ν)M (1).
But (assuming without loss of generality that α ≥ ω)(

|Col (ω, α)| ≤
∏
β<α

|β|ℵ0 ≤ |α|ℵ0.|α| = |α||α| = 2|α|

)M

.

So since α < κ and (κ is a strong limit)M ,
(
|Col (ω, α)|ν ≤ 2|α|.ν < κ

)M
(2).

Together the inequalities (1) and (2) yield (2ν)M [H] < κ.

The final crucial result that we will need later is the following.

Theorem 5. Let φ (x) be a formula in the language of set theory. Then there is a formula

φ̃ (x) in the language of set theory such that for any f ∈M [G] with f : ω → OnM ,

φ (f)M [G] iff φ̃ (f)M [f ] .

We follow the proof given in Kanamori [3, p. 140]. The ingredients are Proposition 3
and the following lemma, which tells us how sequences of ordinals can be “absorbed” into
M .

10



Lemma 5 (factor lemma). Let f ∈M [G] with f : ω → OnM . Then there is a Col (ω, κ)-
generic filter H over M [f ] such that M [G] = M [f ] [H].

For the proof of the factor lemma, we refer the reader to Kanamori [3, pp. 129–131] or
Jech [2, pp. 516–518]. A sketch of Kanamori’s proof can be found in Appendix A.

Proof of Theorem 5. Let f ∈M [G] with f : ω → OnM . Then by the factor lemma there is
a Col (ω, κ)-generic filter H over M [f ] such that M [G] = M [f ] [H]. Now by Proposition

3, either ∅ 
M [f ] φ
(
f̌
)

or ∅ 
M [f ] ¬φ
(
f̌
)
. It follows that φ (f)M [f ][H] iff ∅ 
M [f ] φ

(
f̌
)
.

Now by the definability lemma for forcing extensions, there is a single formula φ̃ (x) in

the language of set theory such that for any f ∈ M [G] with f : ω → OnM , φ̃ (f)M [f ] iff

∅ 
M [f ] φ
(
f̌
)
. Then for any such f , φ (f)M [G] iff φ̃ (f)M [f ], as required.

Remark. Corollary 1, Theorem 4 and Theorem 5 all use the fact that (κ is regular)M .
Only Theorem 4 uses the fact that (κ is a strong limit)M .

2.3 Borel sets and Borel codes

Now that we have studied the model-theoretic constructions to be used in the proof of
Solovay’s theorem, we turn to the measure-theoretic side of the proof.

We will need to apply some of the results of this section in a model of ZF + DC in which
AC need not hold, so in this section, we work in ZF + DC rather than ZFC.

Definition. The Borel algebra B of R is the smallest subset of P (R) such that:

(a) if A ⊆ R is open, then A ∈ B;

(b) (complementation) if A ∈ B, then R \ A ∈ B;

(c) (countable union) if (Ai)i∈I is a countable collection of members of B, then
⋃
i∈I Ai ∈ B.

A set A ⊆ R is a Borel set iff A ∈ B.
A set A ⊆ R is a null set iff its outer Lebesgue measure µ∗ (A) = 0.

The connection between Borel sets and Lebesgue measurability is given by the following
result [2, p. 147], which we will use in the proof of Solovay’s theorem to demonstrate
Lebesgue measurability. The proof can be found in any elementary text on measure theory.

Fact 1. A set A ⊆ R is Lebesgue measurable iff there is a Borel set B such that A4B[9] is
null; a set of reals is null iff it is a subset of a null Borel set.

Although it will not be needed in the proof of Solovay’s theorem, it is instructive to have
the following more explicit description of B known as the Borel hierarchy. The following
definition and proposition are based on Jech [2, p. 140].

Definition. For each α ∈ ω1 \ {0}, define Σ0
α,Π

0
α ⊆ P (R) recursively by:

• Σ0
1 := {A ⊆ R : A is open};

[9]A4B denotes the symmetric difference (A \B) ∪ (B \A).
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• Π0
1 := {A ⊆ R : A is closed};

• for α > 1, Σ0
α :=

{⋃∞
i=0 Ai : (∀i ∈ ω) (∃β < α)

(
Ai ∈ Π0

β

)}
;

• for α > 1, Π0
α := {R \ A : A ∈ Σ0

α}
=
{⋂∞

i=0Ai : (∀i ∈ ω) (∃β < α)
(
Ai ∈ Σ0

β

)}
.

Proposition 5. B =
⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α.

Proof. Firstly, it is clear by induction on α that
⋃
α<ω1

Σ0
α,
⋃
α<ω1

Π0
α ⊆ B.

Next, observe that every open subset of R contains a closed interval with rational
endpoints about each of its points. Therefore every open subset of R can be written as a
countable union of closed sets, and hence Σ0

1 ⊆ Σ0
2. From this it follows easily that for

any α, β ∈ ω1 \ {0} with α < β, Σ0
α ⊆ Σ0

β, Σ0
α ⊆ Π0

β, Π0
α ⊆ Π0

β and Π0
α ⊆ Σ0

β. Hence⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α.

It follows from this that
⋃
α<ω1

Σ0
α is closed under complementation and countable

union, and hence B ⊆
⋃
α<ω1

Σ0
α.

Thus every Borel set can be obtained from open subsets of R through complementation
and countable union in fewer than ω1 steps. The idea of a Borel code is to describe, using
members of ωω, this procedure for obtaining a Borel set. This will be useful in the proof
of Solovay’s theorem when we concern ourselves with absoluteness and ordinal-sequence-
definability. We use ideas from Jech [2, pp. 504–505].

Given a Borel set described either as an open set, or as the complement of another
set, or as the union of a countable sequence of other sets, we seek to construct a code
c ∈ ωω for this description recursively. We will use c (0) to declare which of the three
types of description is being used, and then use the rest of c either to describe an open
set, or another set, or a countable sequence of other sets, respectively. To help us describe
open sets, we fix a recursive[10] enumeration I1, I2, . . . of the open intervals with rational
endpoints. To help us describe a countable sequence of other sets, we fix a recursive
bijection Γ : ω × ω → ω. The recursiveness is to ensure absoluteness below.

Write L for the “left-shift” function ωω → ωω defined by L (c0, c1, . . . ) = (c1, c2, . . . ),
and for i ∈ ω, write Si for the “ith subsequence” function ωω → ωω induced by Γ, defined
by Si (c0, c1, . . . ) =

(
cΓ(i,0), cΓ(i,1), . . .

)
.

Definition. The set BC of Borel codes is the smallest subset of ωω with the following
properties. At the same time we define the interpretation Ac of c ∈ BC recursively.

(a) If c (0) > 1, then c is a Borel code and Ac =
⋃
{In : n ∈ ω \ {0} and c (n) = 1};

(b) if c (0) = 0 and L (c) is a Borel code, then c is a Borel code and Ac = R \ AL(c);

(c) if c (0) = 1 and Si (L (c)) is a Borel code for every i ∈ ω, then c is a Borel code and
Ac =

⋃∞
i=0 ASi(L(c)).

For c ∈ BC, if c (0) > 1 then we say c is an open code, and if c (0) = 0 and L (c) is an
open code, then we say c is a closed code.

[10]Here, by “recursive” we mean “recursive when viewed as a function ω \ {0} → Q2”.
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Proposition 6.

1. {Ac : c ∈ BC and c is an open code} = {O ⊆ R : O is open};

2. {Ac : c ∈ BC and c is a closed code} = {C ⊆ R : C is closed};

3. {Ac : c ∈ BC} = B.

Proof.

1. It is sufficient to prove that every open subset of R can be written as a countable
union of intervals with rational endpoints. But this is clear, since every open subset
of R contains an open interval with rational endpoints about each of its points, and
there are countably many such intervals.

2. This follows immediately from part 1.

3. Given part 1, it is clear that the definition of {Ac : c ∈ BC} precisely mirrors that of B.�

The power of Borel codes comes from their absoluteness properties.

Theorem 6. Suppose M is a transitive ∈-model of ZF + DC. Then:

1. BCM = BC ∩M ;

2. if c ∈ BCM , then AMc = Ac ∩M ;

3. if c ∈ BCM is an open code or a closed code, then µ (Ac)
M = µ (Ac);[11]

4. if c ∈ BCM , then (Ac is null)M iff Ac is null.

For the proof of parts 1 and 2, we ignore the technicalities of how recursive definitions
are formalised and assume that the above definitions retain their form when relativised to
M . A rigorous proof can be carried out via Mostowski’s absoluteness theorem (see Jech [2,
pp. 483–484, 505–506]).

For the proof of parts 3 and 4, we follow the approach of Jech [2, p. 512] and appeal to
the following basic property of Lebesgue measure for part 4.

Fact 2. A set B ∈ B is null iff for every n ∈ N,[12] there exists an open set O ⊆ R with
O ⊇ B and µ (O) < 1

n
.

A set B ∈ B is not null iff for every n ∈ N, there exists a closed set C ⊆ R with C ⊆ B
and µ (C) > 1

n
.

Proof of Theorem 6.

1. First note that both the sequence (Ik)k∈N and the function Γ lie in M since they are
recursive, so the definition of BC makes sense in M . By our simplifying assumption,
it follows by induction on c ∈ BC that c ∈M iff c ∈ BCM .

[11]Of course by µ (Ac)
M

we mean µM
(
AM

c

)
.

[12]By N we mean ω \ {0}.
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2. Since P (ω)M = P (ω) ∩ M , we may assume that R is constructed in such a way
that RM = R ∩M . By our simplifying assumption again, it follows by induction on
c ∈ BC that if c ∈M then AMc = Ac ∩M .

3. Let c ∈ BCM be an open code. Then Ac =
⋃
i∈ω Iki for some sequence (ki)i∈ω ∈M of

members of N. For each i ∈ ω, let Ji = Iki \
(
Ik0 ∪ Ik1 ∪ · · · ∪ Iki−1

)
, so that (Ji)i∈ω is

a sequence of disjoint sets with
⋃
i∈ω Ji =

⋃
i∈ω Iki = Ac. Then for each i ∈ ω, Ji can

be written as a disjoint union of intervals with rational endpoints, so µ (Ji)
M = µ (Ji).

Hence by countable additivity of Lebesgue measure together with the same applied
in M , µ (Ac)

M =
∑

i∈ω µ (Ji)
M =

∑
i∈ω µ (Ji) = µ (Ac).

The case in which c ∈ BCM is a closed code is similar.

4. Let c ∈ BCM . If (Ac is null)M , then by the first half Fact 2 and part 1 of Proposition
6 applied in M , for every n ∈ N there exists an open code dn ∈ BCM with AMdn ⊇ AMc
and µ (Adn)M < 1

n
. For each n ∈ N, by parts 1, 2 and 3 it follows that dn is an open

code, Adn ⊇ Ac and µ (Adn) < 1
n
. So by Fact 2, Ac is null.

Conversely, if (Ac is not null)M , then by a similar argument using the second half of
Fact 2, it follows that Ac is not null. �

Remark. Part 4 of this theorem seems to say that being null is absolute for a transitive
∈-model M of ZF + DC. Indeed, using parts 2 and 4 of this theorem, we can deduce the
following by applying part 3 of Proposition 6 in M : if B ∈ BM then there exists B′ ∈ B
such that B ⊆ B′ and (B′ is null)M iff B is null. However, one cannot conclude from this
that if B ∈ BM then (B is null)M iff B is null. Indeed, if M is countable then RM = R∩M
is countable and hence null, but clearly (R is not null)M . So in this sense, being null is not
absolute for M .

2.4 Random reals and Solovay sets of reals

With these basic properties of Borel sets and Borel codes in place, we are ready to turn
to the concepts at the heart of the proof of Solovay’s theorem. We use ideas from Jech [2,
pp. 513–515].

The concept of a “random” real arises from forcing with a poset based on the Borel
algebra B ordered by ⊆. Rather than using B itself, we would like, intuitively speaking,
to replace the notion of “empty” by the notion of “null”.[13] Now given two sets A and B,
A = B iff A4B is empty, and A ⊆ B iff A \ B is empty. This motivates the following
definition.

Definition. Define the relation ∼ on B by

A ∼ B iff A4B is null.

It follows from the basic properties of Lebesgue measure (using additivity to prove tran-
sitivity) that ∼ is an equivalence relation on B. So we may write [B] for the equivalence
class of B ∈ B.

[13]Note that since all Borel sets are Lebesgue measurable, A ∈ B is null iff the Lebesgue measure µ (A) = 0.
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Define the relation . on B/ ∼ by

[A] . [B] iff A \B is null.

It follows again from the basic properties of Lebesgue measure that . is well-defined and
a partial order on B.

Define the forcing poset B̃ by (B/ ∼) \ {[∅]}, ordered by ..

Remarks.

1. Since we have excluded the equivalence class [∅] of null sets, it follows easily that B̃
is separative.

2. By Fact 1, we could have replaced B in this definition by M, where M =
{A ⊆ R : A is Lebesgue measurable}, and then the map B̃ → M̃ given by [B] 7→ [B]
would be well-defined and an order-isomorphism.

3. The remaining results of the section make frequent implicit use of the absoluteness
properties given by Theorem 6. For example, it follows from parts 2 and 4 that
for c ∈ BCM , [Ac]

M =
{
Ad ∩M : d ∈ BCM , Ad ∈ [Ac]

}
, and so for c, d ∈ BCM ,

[Ac]
M = [Ad]

M iff [Ac] = [Ad].

We begin by illustrating a basic property of B̃ that will be useful later.

Lemma 6. B̃ satisfies the countable chain condition.

Proof. SupposeA ⊆ B̃ is uncountable, and suppose for contradiction thatA is an antichain,
meaning that A ∩B is null for all [A] , [B] ∈ A.

Let [A] ∈ A. For each m ∈ Z, let µm (A) = µ (A ∩ [m,m+ 1)). Then by countable
additivity of Lebesgue measure, µ (A) =

∑
m∈Z µm (A). So since µ (A) > 0, there exists

m[A] ∈ Z with µm[A]
(A) > 0. Note that this makes sense because if A,B ∈ B with [A] = [B],

then µ (A) = µ (B).
Then since µm[A]

(A) > 0 for all [A] ∈ A, there exists n ∈ N and an uncountable subset

C ⊆ A such that µm[A]
(A) > 1

n
for all [A] ∈ C. Then there exists m ∈ Z and a further

uncountable subset D ⊆ C such that m[A] = m for all [A] ∈ D. Let ([Ai])i∈ω be a sequence
of members of D.

Now define Bi = Ai \ (A0 ∪ A1 ∪ · · · ∪ Ai−1) for each i ∈ ω. It follows from the fact that
A is an antichain that [Ai] = [Bi] for all i ∈ ω. But (Bi)i∈ω is a sequence of pairwise disjoint
sets by construction. Therefore by monotonicity and countable additivity of Lebesgue
measure,

µ ([m,m+ 1)) ≥ µm

(⋃
i∈ω

Bi

)
=
∑
i∈ω

µm (Bi) =
∑
i∈ω

µm (Ai) ≥
∑
i∈ω

1

n
=∞.

Contradiction.

We now consider what happens when we force with B̃. Assume, then, that M is a
countable transitive ∈-model of ZFC.
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Roughly speaking, a B̃-generic filter over M is the collection of M -Borel neighbourhoods
of a generic real. We shall now use this argument to show that forcing with B̃ amounts to
adjoining a real. It is the reals that can be adjoined in this fashion that we will call random
(over M).

The following proposition and definition are based on Jech [2, p. 513].

Proposition 7. Let G be a B̃-generic filter over M . Then there exists a unique xG ∈ R
such that for all c ∈ BCM ,

xG ∈ Ac iff [Ac]
M ∈ G. (∗)

Moreover, M [G] = M [xG].

Definition. We say x ∈ RM [G] is random over M , and write x ∈ R (M), iff there is a

B̃-generic filter G over M such that x = xG.

Proof of Proposition 7. We begin by defining xG in M [G]. For each n ∈ N, let

Dn =
{

[B]M ∈ B̃M : B ⊆ (a, b)M for some a, b ∈ Q with a < b < a+ 1
n

}
,

a dense subset of B̃M lying in M . For each n ∈ N, choose [Bn]M ∈ Dn ∩ G with Bn ⊆
(an, bn)M , where an, bn ∈ Q and an < bn < an + 1

n
. Then since G is upward-closed,

[(an, bn)]M ∈ G for each n ∈ N, and since G is directed, am < bn for all m,n ∈ N, else
Bn ∩ Bm is null. It follows easily that sup {an : n ∈ N} and inf {bn : n ∈ N} exist and are
equal. Take xG to be their common value. Note that since G is directed, the value of xG
is independent of the particular choices made.

Observe that for all a, b ∈ Q with a < xG < b, there exists n ∈ N with (an, bn) ⊆ (a, b).
By directedness and upward-closedness of G respectively, it follows that for all c ∈ BCM :

• if there exists a, b ∈ Q with a < xG < b such that Ac ∩ (a, b) is null, then [Ac]
M /∈ G;

• if there exists a, b ∈ Q with a < xG < b such that ([(a, b)] . [Ac])
M , then [Ac]

M ∈ G.

This allows us to define G in M [xG].

Thus xG ∈ M [G] and G ∈ M [xG], so M [G] = M [xG]. Since B̃M is separative, it
follows that xG /∈M and hence, crucially, xG /∈ Q.

Next, the uniqueness property of xG follows easily, for if y ∈ R \ {xG}, then there exists
n ∈ N with y /∈ (an, bn). Since this is simply a single interval with rational endpoints,
there exists c ∈ BCM with Ac = (an, bn). Then [Ac]

M ∈ G but y /∈ Ac, so y does not have
property (∗).

To complete the proof, we prove by induction on c ∈ BCM that xG has property (∗).

(a) If c (0) > 1, then Ac is an open subset of R. Since countable unions will be covered
in part (c), we may assume Ac = (a, b) for some a, b ∈ Q. But then since xG /∈ Q,
xG ∈ (a, b) iff (an, bn) ⊆ (a, b) for some n ∈ N iff [(a, b)]M ∈ G.

(b) If c (0) = 0, then L (c) ∈ BCM and Ac = R \ AL(c), and by the induction hypothesis

xG ∈ AL(c) iff
[
AL(c)

]M ∈ G. Let

D =
{

[B]M ∈ B̃M : ([B] . [Ac])
M or

(
[B] .

[
AL(c)

])M}
,
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a dense subset of B̃M lying in M . Then G∩D is non-empty, so exactly one of [Ac]
M

and
[
AL(c)

]M
lies in G. So xG ∈ Ac iff xG /∈ AL(c) iff

[
AL(c)

]M
/∈ G iff [Ac]

M ∈ G.

(c) If c (0) = 1, then Si (L (c)) ∈ BCM for every i ∈ ω and Ac =
⋃∞
i=0ASi(L(c)), and by

the induction hypothesis, xG ∈ ASi(L(c)) iff
[
ASi(L(c))

]M ∈ G for every i ∈ ω. Let

D =
{

[B]M ∈ B̃M :
(
[B] .

[
ASi(L(c))

])M
for some i ∈ ω or ([B] . [R \ Ac])M

}
,

a dense subset of B̃M lying in M . Then G ∩ D is non-empty, so [Ac]
M ∈ G iff[

ASi(L(c))

]M ∈ G for some i ∈ ω. So xG ∈ Ac iff xG ∈ ASi(L(c)) for some i ∈ ω iff[
ASi(L(c))

]M ∈ G for some i ∈ ω iff [Ac]
M ∈ G. �

From Proposition 7 we can deduce an important characterisation of random reals. The
following proposition is based on Jech [2, pp. 514–515] and Kanamori [3, p. 139].

Proposition 8. R (M) = R \
⋃{

Ac : c ∈ BCM and Ac is null
}

.

Proof. For the forward inclusion, suppose r ∈ R (M). Then r = xG for some B̃-generic

filter G over M . Now if c ∈ BCM and Ac is null, then [Ac]
M = [∅]M does not even lie in B̃M ,

let alone G, so by property (∗), xG /∈ Ac. Hence r ∈ R \
⋃{

Ac : c ∈ BCM and Ac is null
}

.

For the reverse inclusion, suppose r ∈ R \
⋃{

Ac : c ∈ BCM and Ac is null
}

. Then let

G =
{

[Ac]
M : c ∈ BCM and r ∈ Ac

}
.

Note that G ⊆ B̃M by definition of r. It is sufficient to prove that G is a B̃-generic filter over
M , for it then follows by uniqueness in Proposition 7 that r = xG and hence r ∈ R (M).

To see this, it is clear that G is a filter. For genericity, let D ∈ M be a dense subset
of B̃. Then let A ∈ M be a maximal antichain of B̃M such that for all p ∈ A there exists
q ∈ D with (p . q)M . Then by applying Lemma 6 in M , (A is countable)M . So we may
let d ∈ BCM be the Borel code describing the set R \

⋃
{Ac : c ∈ C}, where C is defined

by A =
{

[Ac]
M : c ∈ C

}
.

Then Ad is null, else by density of D we would be able to find p ∈ D with (p . [Ad])
M ,

which we could then add to A to obtain a larger antichain. It follows by definition of r
that r /∈ Ad. So by definition of d, there exists c ∈ C with r ∈ Ac. Then [Ac]

M ∈ G ∩ A.
So by definition of A, there exists q ∈ D with ([Ac] . q)M . Then q ∈ G ∩ D since G is

upward-closed. Thus G is B̃-generic over M .

The bridge between Lebesgue measurability and definability in the proof of Solovay’s
theorem comes from the notion of a Solovay set of reals. The following definition and
proposition are based on Jech [2, p. 515].

Definition. Let S ⊆ R. We say S is Solovay over M iff there exists a formula
φ (x1, x2, . . . , xn, y) in the language of set theory and a1, a2, . . . , an ∈ M such that for
all r ∈ R,

r ∈ S iff φ (a1, a2, . . . , an, r)
M [r] .
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The connection between random reals and Solovay sets of reals is given by the following
result.

Proposition 9. Let S ⊆ R be Solovay over M . Then there exists d ∈ BCM such that for
all r ∈ R (M),

r ∈ S iff r ∈ Ad.
The proof uses ideas from Jech [2, p. 515] and Kanamori [3, p. 140].

Proof. Recall the canonical B̃M -name Ġ :=
{

(p, p̌) : p ∈ B̃M
}

for a B̃-generic filter over M .

Now by Proposition 7, if G is a B̃-generic filter over M , then xG =
⋂{

A
M [G]
c : [Ac]

M ∈ G
}

.

Via the proof of the forcing theorem, this allows us to construct a canonical B̃M -name ẋ
for a random real, so that if G is a B̃-generic filter over M then the interpretation of ẋ
relative to G is xG.

Since S is Solovay over M , there exists a formula φ (x1, x2, . . . , xn, y) and a1, a2, . . . , an ∈
M such that for all r ∈ R, r ∈ S iff φ (a1, a2, . . . , an, r)

M [r]. We now use an argument
involving a maximal antichain that is very similar to the one in the proof of Lemma 4.

Let A ∈ M be a maximal antichain of B̃M such that for all p ∈ A, either p 

φ (ǎ1, ǎ2, . . . , ǎn, ẋ) or p 
 ¬φ (ǎ1, ǎ2, . . . , ǎn, ẋ). Partition A as A+ ∪ A− according to
the two cases. Just as in the proof of Lemma 4, it follows by considering the set of .-
predecessors of members of A that for any B̃-generic filter G over M , there is a unique
pG ∈ G ∩ A.

Now by applying Lemma 6 in M , (A is countable)M , so we may let d ∈ BCM be
the Borel code describing the countable union

⋃
{Ac : c ∈ C+}, where C+ is defined by

A+ =
{

[Ac]
M : c ∈ C+

}
. Then (p . [Ad])

M for all p ∈ A+, and (p ∩ Ad is null)M for all

p ∈ A− by countable additivity of Lebesgue measure.
We claim that d is as required. To see this, let r ∈ R (M). Then r = xG for some

B̃-generic filter G over M . So

xG ∈ S iff φ (a1, a2, . . . , an, xG)M [xG]

iff φ (a1, a2, . . . , an, xG)M [G] (since M [G] = M [xG] by Proposition 7)

iff p 
 φ (ǎ1, ǎ2, . . . , ǎn, ẋ) for some p ∈ G (by the truth lemma)

iff pG ∈ G ∩ A+ (else pG ∈ G ∩ A−)

iff [Ad]
M ∈ G (since G is upward-closed)

iff xG ∈ Ad (by property (∗) from Proposition 7).

In other words, r ∈ S iff r ∈ Ad.

All we will need from this section in the proof of Solovay’s theorem is the following
result, which brings together Propositions 8 and 9.

Corollary 2. Let S ⊆ R be Solovay over M . Then there exists d ∈ BCM such that

S4Ad ⊆
⋃{

Ac : c ∈ BCM and Ac is null
}
.

Proof. By Proposition 9, there exists d ∈ BCM such that for all r ∈ R (M), r ∈ S iff
r ∈ Ad. In other words, S4Ad ⊆ R \R (M). Now apply Proposition 8.
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2.5 Proof of Solovay’s theorem

With all the preliminary results in place, we can at last proceed to the proof of Solovay’s
theorem. We encourage the reader to review the outline given in the introduction to this
chapter and the statements of Lemma 2, Fact 1, Corollaries 1 and 2 and Theorems 3–6.
The proof is based on Jech [2, pp. 520–521].

Proof of Theorem 2. Let M be a countable transitive ∈-model of ZFC + I. Let κ ∈M with
(κ is a strongly inaccessible cardinal)M , and let G be Col (ω, κ)-generic over M .

Let N = HOD∗M [G]. By Theorem 3, N is a countable transitive ∈-model of ZF + DC,
so it remains to show that N is also a model of LM.

Let S ∈ N with S ⊆ RN . We must prove that (S is Lebesgue measurable)N .
By definition of HOD∗ there exists a formula ψ (x, y) in the language of set theory and

f ∈ M [G] with f : ω → OnM such that ψ (f, S)M [G] and S is unique in M [G] with this
property. Now let φ (x, z) be the formula ∃y (z ∈ y ∧ ψ (x, y)), so that for all r ∈ M [G],

r ∈ S iff φ (f, r)M [G]. Then by viewing real numbers as functions ω → {0, 1} and using a

two-variable version of Theorem 5, we obtain a formula φ̃ (x, y) such that for all r ∈M [G],

r ∈ S iff φ̃ (f, r)M [f ][r]. Thus S is Solovay over M [f ].
It follows by Corollary 2 that there exists d ∈ BCM [f ] such that S4Ad ⊆⋃{
Ac : c ∈ BCM [f ] and Ac is null

}
. Note that d ∈M [G] since M [f ] ⊆M [G].

Now by Theorem 4,
(
2ℵ0
)M [f ]

< κ. But by Corollary 1, κ ≤ ℵM [G]
1 . It

follows that
((

2ℵ0
)M [f ]

is countable
)M [G]

and hence
(

BCM [f ] is countable
)M [G]

. So

we may let e ∈ BCM [G] be the Borel code describing the countable union⋃{
Ac : c ∈ BCM [f ] and Ac is null

}
. Crucially, e ∈ M [G]. Then since BCM [f ] is count-

able, it follows by countable additivity of Lebesgue measure that Ae is null.
Thus we have found d, e ∈ BCM [G] such that S4Ad ⊆ Ae and Ae is null. Note that we

could use Fact 1 to deduce from this that S is Lebesgue measurable.
To deduce that (S is Lebesgue measurable)N , recall that Borel codes are functions

ω → ω. Therefore by Lemma 2, d, e ∈ BCN . Here we have used part 1 of Theorem 6.
Next, since S ⊆ RN , it follows by part 2 of Theorem 6 that S4ANd ⊆ ANe . Finally, since
Ae is null, it follows by part 4 of Theorem 6 that (Ae is null)N . Thus by applying Fact 1
in N , (S is Lebesgue measurable)N .

3 Necessity of the inaccessible

Recall the question we were originally hoping to settle: is ZF+DC+LM consistent? Theorem
1 showed us that the answer is yes, assuming that ZFC + I is consistent. It is natural to
ask whether this hypothesis can be weakened.

This chapter is devoted to proving, in outline, the following converse to Theorem 1,
which shows that it cannot be weakened.

Theorem 7. If ZF + DC + LM is consistent, then ZFC + I is consistent.

To prove Theorem 7, we will prove the following in ZF + DC. Here, L is Gödel’s
constructible universe.
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Theorem 8 (Shelah [7]). Suppose every set of reals is Lebesgue measurable. Then (κ is
a strongly inaccessible cardinal)L, where κ = ℵ1.

Remark. Of course it cannot be the case that (ℵ1 is a strongly inaccessible cardinal)L.
But we need not have ℵL1 = ℵ1, while of course by κL we mean κ.

To prove Theorem 7 from this, we use the fact that L is a “class model” of ZFC in the
sense that for each axiom φ of ZFC, φL is a theorem of ZF [2, pp. 175–190].

Proof of Theorem 7 from Theorem 8. By Theorem 8, IL is a theorem of ZF + DC + LM.
But for each axiom φ of ZFC, φL is also a theorem of ZF + DC + LM. It follows that for
any theorem ψ of ZFC + I, ψL is a theorem of ZF + DC + LM by relativising the proof to L.
In particular, if ZFC + I is inconsistent then so is ZF + DC + LM.

For the rest of this chapter, then, we work in ZF + DC unless stated otherwise.

3.1 Constructible closure

We follow the approach of Semmes [6] and begin by dealing with the part of the proof of
Shelah’s theorem concerning Gödel’s constructible universe. In doing so we shall reduce
Shelah’s theorem to the following result.

Theorem 9 (Raisonnier [8]). If there is an uncountable well-ordered set of reals, then
there is a non-measurable set of reals.

To prove Shelah’s theorem from this, we require the notion of constructible closure.
The following definition is from Kanamori [3, p. 34].

Notation. Denote by def the definable power set operation used to define L.

Definition. Let x be a set. The constructible closure of x is

L (x) :=
⋃
α∈On

Lα (x) ,

where Lα (x) is defined recursively for α ∈ On by:

• L0 (A) = TC ({x});

• Lα+1 (A) = def (Lα (x));

• Lδ (x) =
⋃
α<δ Lα (x) for δ ∈ On a non-zero limit.

Thus L (∅) = L. It can be shown that L (x) is an inner model, meaning that it is a
transitive class ∈-model of ZF containing every ordinal, and moreover it is the smallest (by
inclusion) inner model containing x [3, p. 34]. Furthermore, if L (x) contains a well-ordering
of TC ({x}), then, like L, there is a class well-ordering of L (x) and hence AC also holds in
L (x). Note that this occurs when x ∈ R, for in this case, viewing real numbers as subsets
of ω, TC ({x}) is either finite or equal to ω ∪ {x}.

Lastly, we also need the fact that the generalised continuum hypothesis holds in L [2,
pp. 190–191].

We are now ready to prove Shelah’s theorem from Raisonnier’s theorem. We use ideas
from Bekkali [5, p. 8].
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Proof of Theorem 8 from Threorem 9. Let κ = ℵ1, and suppose for contradiction that (κ is
not strongly inaccessible)L. Clearly (κ is a regular cardinal)L since ℵ1 is a regular cardinal,
so (κ is not a strong limit)L. But strong limit cardinals are those uncountable cardinals
of the form iδ with δ ∈ On a limit ordinal, so since the generalised continuum hypothesis
holds in L, (κ is not a limit cardinal)L. So there exists a α < κ such that (κ is the cardinal
successor to α)L. In particular, if α < β < κ then L contains a bijection α→ β.

Now since α < ℵ1, there is a well-ordering of ω of order type α, which, viewed as a subset
of ω× ω, has a corresponding x ∈ R satisfying (α is countable)L(x). But if α < β < κ then
L (x) ⊇ L contains a bijection α→ β and hence (β is countable)L(x). Thus (κ = ℵ1)L(x).

But AC holds in L (x), so L (x) contains a set of reals of with a well-ordering of order

type ℵL(x)
1 = ℵ1. Thus there is an uncountable well-ordered set of reals and so by Theorem

9, there is a non-measurable set of reals. Contradiction.

3.2 Cantor space

Rather than prove Raisonnier’s theorem in R directly, we work in a related measure space
known as “Cantor space”, which can be embedded into R via the familiar Cantor set.

Definition. The Cantor ternary set C1/3 ⊆ R is the set obtained from [0, 1] by successively
removing the open middle third from every remaining interval. That is,

C1/3 := [0, 1] \
∞⋃
n=1

3n−1−1⋃
m=0

(
3m+ 1

3n
,
3m+ 2

3n

)
.

Cantor space is the topological space

C := ω {0, 1}

with the product topology induced by the discrete topology on {0, 1}. We identify C and
P (ω) so that for x ∈ C and n ∈ ω, x (n) = 1 iff n ∈ x.

The following result is as an easy exercise.

Proposition 10. If C1/3 is given the subspace topology, then the base-3 expansion map
C → C1/3 given by

x 7→
∞∑
n=0

2x (n)

3n+1

is a homeomorphism. �

It might appear that we should search for a non-measurable subset of C1/3 by studying
C and then applying Proposition 10. But this is doomed to failure, because in fact C1/3 is
null and therefore so are all of its subsets. To see this, observe that at each stage in the
construction of C1/3 we remove 1

3
of the remaining measure, and apply countable additivity.

We therefore need a different way of embedding C into R. The following definition is
based on Wikipedia [9].
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Definition. The fat Cantor set C∗ ⊆ R is

C∗ := [0, 2] \
∞⋃
n=0

Cn,

where for each n ∈ ω, Cn consists of an open interval of width 1
22n+1 taken from the middle

of each interval of [0, 2] \
⋃n−1
m=0 Cm.

In a similar fashion to Proposition 10, there is a natural homeomorphism f : C∗ → C.
Defining the Borel algebra B∗ of C analogously to the Borel algebra B of R, it follows easily
that

B∗ =
{
f
(
B ∩ C∗

)
: B ∈ B

}
.

Moreover, for each n ∈ ω the measure of Cn is 2n. 1
22n+1 = 1

2n+1 and hence the total measure
of C∗ is 2 −

∑∞
n=0

1
2n+1 = 1. So the measure induced by Lebesgue measure on C via f is

non-trivial.
This induced measure is also called Lebesgue measure and denoted by µ. One can show

that µ is equal to the so-called completion of the product measure on C induced by the
uniform probability measure on {0, 1}. This is the probability measure that is usually used
to describe an infinite sequence of coin tosses. Thus we have reduced the problem of finding
a non-measurable set of reals to the problem of finding a non-measurable subset of C under
this measure.

We now introduce the measure-theoretic properties of C required for the proof of Raison-
nier’s theorem.

Definition. We say A ⊆ C is a tail set iff for every x ∈ A, if y ∈ C with x (n) = y (n) for
all but finitely many n ∈ ω, then y ∈ A.

Let x ∈ C and n ∈ ω. The ball of codimension n about x is

Bn (x) = {y ∈ C : x (m) = y (m) for all m ∈ {0, 1, . . . , n− 1}} .

Let A ⊆ C be measurable and x ∈ C. The density of A at x is

dA (x) = lim
n→∞

µ (A ∩Bn (x))

µ (Bn (x))
,

if the limit exists.

The following list of results is based on Semmes [6, p. 5]. The proofs can be found in
any good text on measure theory.

Fact 3. Let A ⊆ C be measurable.

1. ( Kolmogorov’s zero–one law) If A is a tail set, then µ (A) = 0 or 1.

2. ( Lebesgue’s density theorem) A4{x ∈ C : dA (x) = 1} is null.

3. ( Fubini’s theorem) Let f : C × C → C be a homeomorphism induced by a bijection
ω + ω → ω. Then A is null iff {x ∈ C : µ ({y ∈ C : f (x, y) ∈ A}) > 0} is null.
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We conclude this section with an instructive example of a non-measurable subset of C
that can be constructed using AC. The following is based on Bekkali [5].

Example. Assume AC. Recall that by Zorn’s lemma, any filter on ω[14] can be extended
to a maximal filter, also known as an ultrafilter, which contains exactly one member of
the pair {x, ω \ x} for each x ⊆ ω. Extend the cofinite filter {x ⊆ ω : ω \ x is finite} to an
ultrafilter U . The result is known as a non-principal ultrafilter on ω and does not contain
any finite sets.

Suppose for contradiction that U , viewed as a subset of C, is measurable. First we
claim that U is a tail set. To see this, suppose x ∈ U and y ∈ C differs from x in only
finitely many places. Then ω \ y /∈ U , else x ∩ (ω \ y) is a finite set lying in U . So y ∈ U
by maximality of U . This proves the claim. It follows by Kolmogorov’s zero–one law that
µ (U) = 0 or 1.

But the map g : P (ω) → P (ω) defined by g (x) = ω \ x induces a measure-preserving
transformation on C, since it corresponds to a reflection of C∗ about the point 1. Moreover,
P (ω) is equal to the disjoint union U ∪ g (U) by maximality of U . Hence we must have
µ (U) = µ (g (U)) = 1

2
. Contradiction.

3.3 Rapid filters and outline of proof of Raisonnier’s theorem

Motivated by the above example, we attempt to approximate the notion of a non-principal
ultrafilter by defining a “rapid filter”. This is closely related to the idea of a dominating
family. The following definition is based on Semmes [6, p. 8].

Definition. To each x ⊆ ω associate the sequence (xn)n∈ω listing the members of x in
ascending order.

A filter F on ω is rapid iff for every y ⊆ ω there exists x ∈ F such that for all n ∈ ω,
xn ≥ yn.

Observe that if F is a rapid filter on ω then F does not contain any finite sets, else the set
of minimal elements of members of the filter is bounded. Observe also that F is uncountable
by a diagonal argument. Thus rapid filters approximate non-principal ultrafilters in the
sense that a rapid filter is a fairly “large” subset of a non-principal ultrafilter. Moreover,
we will be able to adapt the argument used for non-principal ultrafilters to show that rapid
filters are non-measurable.

To construct a rapid filter from an uncountable well-ordered set of reals we require a
couple more pieces of terminology. The following definition is based on Semmes [6, p. 10].

Definition. Let S be a collection of finite subsets of ω.
We say that S captures X ⊆ C iff for every x ∈ X, x ∩ {0, 1, . . . , n− 1} ∈ S for all

sufficiently large n ∈ ω.
We say that S splits on n ∈ ω iff there exists s ⊆ {0, 1, . . . , n− 1} such that s, s∪{n} ∈

S.

Our rapid filter will come from taking X to be a subset of C of cardinality ℵ1 in the
following definition, which is also based on Semmes [6, p. 10].

[14]A filter on a set X means a filter of the poset P (X) \ {∅} ordered by inclusion.
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Definition. Let X ⊆ C be uncountable. Define

F (X) := {x ∈ C : there is a collection S of finite subsets of ω such that

S captures X and splits only on members of x}.

It is an exercise to show that F (X) is a filter for each uncountable X ⊆ C. The
uncountability of X is used to show that ∅ /∈ F (X) [6, p. 10].

We are now ready to outline the proof of Raisonnier’s theorem. For the full proof, we
refer the reader to Semmes [6] or Bekkali [5, pp. 1–8]. Here, we follow the approach of
Semmes.

Outline of proof of Theorem 9. Suppose there is an uncountable well-ordered set of reals.
Then in particular there is a set of reals of cardinality ℵ1. Using a bijection R→ P (ω) we
obtain X ⊆ C of cardinality ℵ1. Now prove the following three results.

1. If every subset of C is measurable, then the union of ℵ1 null subsets of C is null.
First show that we may assume without loss of generality that the union is a tail
set. Then use Fubini’s theorem to show that it cannot have measure 1. It follows by
Kolmogorov’s zero–one law that it is null.

2. Rapid filters are non-measurable. Let F be a rapid filter and suppose for contradiction
that F is measurable. Use Lebesgue’s density theorem to show that F meets every
closed subset of C of positive measure, and deduce that µ (F ) = 1. Now recall from
the example of the non-principal ultrafilter that the map g : P (ω) → P (ω) defined
by g (x) = ω \x is measure-preserving. So since F is a filter, F and g (F ) are disjoint
sets of equal measure and hence µ (F ) ≤ 1

2
. Contradiction.

3. If the union of ℵ1 null subsets of C is null, then F (X) is rapid. First use the
hypothesis to show that for every y ⊆ ω there exists a collection S of finite subsets
of ω such that S captures X and |{s ∈ S : s ⊆ {0, 1, . . . , yn − 1}}| ≤ n for all n ∈ ω.
This is the heart of the proof. Deduce from this that F (X) is rapid.

Together these results show that if every subset of C is measurable, then F (X) is non-
measurable. Therefore there is a non-measurable subset of C. By embedding this into the
fat Cantor set C∗ we obtain a non-measurable set of reals.

4 Conclusion

We began with the question: is it consistent with ZF+DC that every set of reals is Lebesgue
measurable? Through Theorems 1 and 7 we have seen that ZF + DC + LM is consistent iff
ZFC + I is consistent. The question remains: does the consistency of ZFC + I follow from
the consistency of ZFC?

To answer this question, recall that if κ is a strongly inaccessible cardinal, then Vκ is
a model of ZFC [1, p. 110]. It follows that ZFC + I proves Con (ZFC). So if ZFC + I is
consistent, then ZFC cannot prove Con (ZFC) ⇒ Con (ZFC + I), else ZFC + I would prove
Con (ZFC + I), contrary to Gödel’s second incompleteness theorem.
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Nonetheless, the consistency of ZFC + I is a very “believable” statement for a couple of
reasons. Firstly we have an analogy with the axiom of infinity [2, p. 58] [3, p. XVI]: ℵ0

can be viewed as the limit of what we can obtain from finite cardinals in ZFC − Infinity,
with Vℵ0 being a model of ZFC− Infinity; likewise, a strongly inaccessible cardinal κ can be
viewed as the limit of what we can obtain from smaller cardinals in ZFC, with Vκ being a
model of ZFC. Secondly, this analogy extends much further in the theory of large cardinals,
with many large cardinal axioms implying the consistency of ZFC + I, and no evidence of
an inconsistency even for far stronger axioms.

Thus we propose the following answer to the original question.

Answer. Assuming ZFC is consistent, we cannot prove from this that ZF + DC + LM is
consistent by methods formalisable in ZFC.

However, the consistency of ZF + DC + LM does follow from the “believable” statement
that ZFC + I is consistent.

4.1 Further results

We conclude by mentioning various related results.

Notation. Denote by B the statement that every subset of reals has the Baire property,
i.e. differs from an open set by a countable union of nowhere dense sets.

Denote by P the statement that every uncountable set of reals has a perfect subset,
i.e. a non-empty closed subset with no isolated points.

Denote by W the statement that there is a weakly inaccessible cardinal.

Just as for LM, neither B nor P hold in ZFC, but both hold in Solovay’s model. Hence
if ZFC + I is consistent then so is ZF + DC + LM + B + P [3, pp. 132–141]. Much like LM,
if ZF + P is consistent then so is ZFC + I [13]. In contrast, however, the consistency of
ZF + DC + B does follow just from the consistency of ZFC [7].

Next we observe that even though a strongly inaccessible cardinal need not be weakly
inaccessible, ZFC + W is consistent iff ZFC + I is consistent. To see the “if” statement,
simply observe that in ZFC, any strongly inaccessible cardinal is weakly inaccessible. The
converse follows from the fact that in ZFC, if κ is a weakly inaccessible cardinal, then (κ is
a strongly inaccessible cardinal)L since the generalised continuum hypothesis holds in L.

We return now to the issue of Lebesgue measurability. Solovay also showed that if
ZFC is consistent then ZF + DC+“there is a monotone, countably additive and translation
invariant extension of Lebesgue measure to all subsets of the reals” is consistent [14]. Since
this result does not mention the existence of a strongly inaccessible cardinal, this is perhaps
a more satisfying solution to the measure problem described in the introduction.

Perhaps an even more satisfying solution was given by Shelah and Woodin [15], who
showed that if there is a supercompact cardinal (see Kanamori [3, p. 298]), then the con-
structible closure of the reals L (R) is a class model of ZF + DC + LM + B. In some sense, if
Solovay’s theorem says that every “definable” set of reals is Lebesgue measurable, then this
result says that every “transfinitely definable” (or as Shelah and Woodin put it, “reason-
ably definable”) set of reals is Lebesgue measurable (and has the Baire property). However,
the large cardinal hypothesis here is strictly stronger than I.
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Finally, for those that are content that ZF+DC+LM is consistent, we propose the related
question: how strong a form of the axiom of choice is needed to construct a non-measurable
set in ZF? Theorem 9 demonstrates that DC+“there is an uncountable well-ordered set
of reals” is enough. From this it follows that DC+“there is no partition of 2ℵ0 into more
than 2ℵ0 pairwise disjoint non-empty sets” is enough (see Appendix B). The example at
the end of section 3.2 shows that the existence of a non-principal ultrafilter on ω is enough.
We refer the reader to Herrlich [11, p. 156] for a wide variety of other statements with this
property. These include the existence of a basis for R as a vector space over Q, the axiom
of choice for pairs, and the Hahn-Banach theorem.
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A Sketch of proof of the factor lemma

As in section 2.2, we work in ZFC and assume that M is a countable transitive ∈-model of
ZFC and that κ ∈ M with (κ is a strongly inaccessible cardinal)M . Let G be a Col (ω, κ)-
generic filter over M .

Recall the following lemma.

Lemma 5 (factor lemma). Let f ∈M [G] with f : ω → OnM . Then there is a Col (ω, κ)-
generic filter H over M [f ] such that M [G] = M [f ] [H].

The full proof can be found in Kanamori [3, pp. 129–131] or Jech [2, pp. 516–518]. Here,
we sketch Kanamori’s proof, which begins with the following lemma.

Lemma 7. Let P be a separative forcing poset with maximal element 1, and let α ∈ On
with |α| ≥ |P |. Suppose

1 
 (∃f)
(
f : ω → α is surjective and f /∈ V̌

)
.

Then there is an order-isomorphism between a dense subset of Col (ω, {α}) and a dense
subset of P . Hence Col (ω, {α}) and P have the same generic extensions.

Sketch of proof. The dense subset of Col (ω, {α}) that we shall use is

D = {p ∈ Col (ω, {α}) : dom (p) = {α} × n for some n ∈ ω} .

The poset embedding g : D → P is defined recursively, as follows. First define g (∅) := 1.
Then, having defined g (p) for some p ∈ D with dom (p) = {α}× n, where n ∈ ω, choose a
maximal antichain {aβ : β < α} of P below g (p) such that for all β < α, there exists q ∈ P
such that aβ 
 ġ (n) = q̌. Here, ġ is a P -name such that 1 
 (ġ : ω → Ġ is surjective),
where Ġ is the canonical P -name for a generic object. Then define g (p ∪ {((α, n) , β)}) :=
aβ.

To complete the sketch of Kanamori’s proof, we draw on Lemma 4, which relates the
intermediate extension to a forcing extension. We will also need to re-use the argument
from the last paragraph of the proof of Lemma 4.

Sketch of proof of Lemma 5. By Lemma 4, there exists α < κ such that M [f ] ⊆
M [G ∩ Col (ω, {α})], where G ∩ Col (ω, {α}) is a Col (ω, α)-generic filter over M .

Let G0 = G∩Col (ω, α)M , G1 = G∩Col (ω, {α})M and G2 = G∩Col (ω, κ \ (α + 1))M .
First, one can find a separative partial order P ∈ M [f ] and a P -generic filter H0 over

M [f ] such that M [f ] [H0] = M [G0]. Let Q = P × Col (ω, {α})M . One can then apply
Lemma 7 to Q to obtain a Col (ω, {α})-generic filter H1 over M [f ] such that M [f ] [H1] =
M [f ] [H0] [G1].

Next, one can apply Lemma 7 to Col (ω, α + 1)M to obtain a Col (ω, α + 1)-generic filter
H2 over M [f ] such that M [f ] [H2] = M [f ] [H1]. By repeatedly applying the argument
from the last paragraph of the proof of Lemma 4, we find that M [G] = M [G0] [G1] [G2] =
M [f ] [H0] [G1] [G2] = M [f ] [H1] [G2] = M [f ] [H2] [G2] = M [f ] [H], where H = H2 ∪G2 is
a Col (ω, κ)-generic filter over M [f ].
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B Fun corollary to Theorem 9

Recall the following theorem of ZF + DC (Theorem 9): if there is an uncountable well-
ordered set of reals, then there is a non-measurable set of reals. From this we obtain the
following theorem of ZF + DC, which illustrates a counterintuitive consequence of LM.

Corollary 3. Suppose every set of reals is Lebesgue measurable. Then there is a partition
of 2ℵ0 into more than 2ℵ0 pairwise disjoint non-empty sets.

The proof is due to a pseudonymous MathOverflow user [12].

Proof. First note that |P (ω × ω)| = 2ℵ0 . Then define the equivalence relation ∼ on
P (ω × ω) by X ∼ Y iff either X = Y or X and Y are isomorphic well-orderings of ω.
Since for example any X ⊆ ω×ω containing both (0, 1) and (1, 0) is not a well-ordering of
ω, there are ℵ1 + 2ℵ0 equivalence classes.

To see that ℵ1 + 2ℵ0 > 2ℵ0 , observe that there is clearly an injection 2ℵ0 → ℵ1 + 2ℵ0 ,
but since every set of reals is Lebesgue measurable, by Theorem 9 there is no injection
ℵ1 → 2ℵ0 and hence no injection ℵ1 + 2ℵ0 → 2ℵ0 .
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