
CAMBRIDGE

23THE TRIPLE HELIX Michaelmas 2011© 2011, The Triple Helix, Inc. All rights reserved.

The Hex Factor:
The NIST Hash Function Competition

Jacob Hilton

The fields of cryptography (code-making) and cryptanalysis
(code-breaking) were transformed into mathematical
disciplines by the fundamental breakthroughs of Claude

Shannon in the 1940s. These subjects have since become
an integral part of secure electronic communication, whose
prevalence in everyday life increases as the digital revolution
continues. One of the most significant recent advances in
cryptography has been the development of new FU\SWRJUDSKLF�
KDVK� IXQFWLRQV. This process often requires considerable
creativity because, despite their inherently non-random
character, it is desirable for cryptographic hash functions
to exhibit behaviour characteristic of random functions [1].
It is perhaps in part for this reason that the development
of a new cryptographic hash function, to be called SHA–3,
takes the form of a public competition. The USA’s National
Institute of Standards and Technology (NIST) announced
the competition in November 2007 and received 64 entries,
including contributions from France Télécom, IBM and Sony
[2–4]. Five finalists were selected in December 2010, and
the winner is due to be announced in 2012 [5].

What is a cryptographic hash function?
A�KDVK�IXQFWLRQ (or KDVK�DOJRULWKP) is an easy-to-perform,

non-random procedure that takes a variable-length piece
of data, known as a PHVVDJH, and produces a condensed
representation, known as a PHVVDJH�GLJHVW or KDVK. A basic
example of a hash function for numerical data is adding
together the digits of a number. Hash functions have many non-
cryptographic applications, most importantly in optimising
data retrieval and comparison. A FU\SWRJUDSKLF�KDVK�IXQFWLRQ,
however, is distinguished by its resistance to cryptanalytic
attack, known as its VHFXULW\. The most important types of
resistance are the following [6]:

�� FROOLVLRQ�UHVLVWDQFH: hard to find two messages with
the same hash

�� SUHLPDJH�UHVLVWDQFH� hard to find a message with a
particular hash

�� VHFRQG�SUHLPDJH�UHVLVWDQFH��hard to find a message
with the same hash as another particular message

The example of adding together the digits of a number,
for instance, would be a poor choice of cryptographic hash
function on all three counts.

Cryptographic hash functions underpin many of the
techniques of modern cryptography. Their applications
include digital signature algorithms, password verification,
message authentication algorithms, pseudorandom number
generators and cryptographic key derivation functions. The
first two of these are explained below.

Application to digital signature algorithms
Digital signature algorithms are the application for

which most modern cryptographic hash functions were
originally designed [6]. As the name suggests, the purpose
of a digital signature is to provide the recipient of a message
with confirmation that the message originated from a specific
source. For example, the message may be a piece of software,
in which case digital signature verification may be performed
by anti-virus software.

A typical digital signature algorithm will involve SXEOLF�
NH\�FU\SWRJUDSK\ (such as the RSA algorithm), in which two
NH\V are generated by the signer in advance: a SXEOLF�NH\�
which is made available to the recipient, and a SULYDWH�NH\,
which is kept secret, and is designed to be hard to deduce
from the public key. A simple digital signature can then
be realised as a transformation of the message using the
private key that can be undone using the public key: forging
a signature for a particular message is hard since the private

Cryptography is essential to the security of online shopping.
Reproduced from [16]

 A cryptographic hash
function is akin to a method
of encryption for which no
method of decryption exists

24 THE TRIPLE HELIX Michaelmas 2011 © 2011, The Triple Helix, Inc. All rights reserved.

CAMBRIDGE

key is secret, yet the recipient is able to verify the signature
by undoing the transformation and comparing the result
with the message.

In a more typical version of this algorithm, a hash,
acting as a proxy for the message, is transformed instead
(see figure). This can dramatically improve the speed of the
algorithm by eliminating the need for the entire message,
which may be very long, from having to be transformed. It
has the added benefit of preventing an attacker from being
able to create a random forgery by simply choosing a random
signature and computing the message to which it applies: if
the attacker only has access to the hash, then the cryptographic
hash function’s preimage resistance makes it hard for the
attacker to compute the message itself. Second-preimage
resistance is also important in this application: otherwise
it may be possible to pass off one message as another, such
as a virus as another piece of software.

Application to password verification
Cryptographic hash functions can also be used to make

passwords harder to steal. A simple method of password

verification involves comparing a password entered by
a user with the correct password. However, if hashes of
these passwords are compared instead, then it becomes no
longer necessary to store the password itself, only its hash.
Hence, because of the cryptographic hash function’s preimage
resistance, someone with unauthorised access to this data
will find it harder to recover the password. Moreover, its
collision resistance ensures that comparing the hashes is a
reliable way of testing whether the correct password has
been entered.

This example illustrates the sense in which a cryptographic
hash function can be said to protect data: it is akin to a method
of encryption for which no method of decryption exists.

History of the SHA functions
NIST began the standardisation of cryptographic hash

functions in May 1993 with the specification of the Secure
Hash Algorithm (SHA), now called SHA–0 [6]. In April
1995, SHA–1, a revision of SHA–0 with improved security,
was announced [7], though it took until August 1998 for a
specific weakness in the collision resistance of SHA–0 to be
demonstrated [8]. In August 2002, a new family of three
algorithms, known collectively as SHA–2, was specified
[9], each producing hashes of a different length (256, 384
and 512 bits compared with 160 bits for an SHA–1 hash).
An additional variant (224 bits) was added to the family in
February 2004.

Following the discovery in August 2004 of a weakness
in a modified version of SHA–1, NIST announced plans to

Schematic representation of how a typical digital signature is applied and
verified. The certificate identifies the public key with the sender and is itself

digitally signed by a certificate authority. Adapted from [17]

 A successful collision attack
on an algorithm in the

SHA-2 family could have
catastrophic effects for digital

signatures

CAMBRIDGE

25THE TRIPLE HELIX Michaelmas 2011© 2011, The Triple Helix, Inc. All rights reserved.

References:
1. Bellare M, Rogaway P. Random Oracles are Practical: A Paradigm for
Designing Effcient Protocols. In: Denning D, Pyle R, Ganesan R, Sandhu R,
Ashby V, editors. Proceedings of the 1st ACM Conference on Computer and
Communications Security; 1993 Nov 3–5; New York City: ACM; 1993. p. 63.
2. ECHO hash function [homepage on the Internet]. Paris: France Télécom;
[cited 2011 Aug 23]. Available from: http://crypto.rd.francetelecom.com/
ECHO/
3. The Hash Function Fugue [homepage on the Internet]. Hawthorne,
New York: IBM; [updated 2010 Dec 7; cited 2011 Aug 23]. Available from:
http://domino.research.ibm.com/comm/research_projects.nsf/pages/
fugue.index.html
4. Iwata T, Shibutani K, Shirai T, Moriai S, Akishita T. AURORA: A
Cryptographic Hash Algorithm Family [monograph on the Internet]. Graz,
Austria: Graz University of Technology; 2008 Oct 31 [cited 2011 Aug 23].
Available from: http://ehash.iaik.tugraz.at/uploads/b/ba/AURORA.pdf
5. Cryptographic Hash Algorithm Competition [homepage on the Internet].
Gaithersburg, Maryland: NIST; [updated 2010 Dec 13; cited 2011 Aug 23].
Available from: http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
6. Kayser RF. Announcing Request for Candidate Algorithm Nominations
for a New Cryptographic Hash Algorithm (SHA–3) Family. Federal Register.
2007 Oct 29;72(212):62212–62220. Available from: http://csrc.nist.gov/
groups/ST/hash/documents/FR_Notice_Nov07.pdf
7. US Department of Commerce, NIST. Secure Hash Standard. FIPS 180–1.
1993 May 11. Available from: http://www.itl.nist.gov/fipspubs/fip180-1.htm
8. Chabaud F, Joux A. Differential Collisions in SHA–0. In: Krawczyk H,
editor. Advances in Cryptology – CRYPTO ‘98, 18th Annual International
Cryptology Conference; 1998 Aug 23–27; Berlin: Springer; 1998. p. 56–71.
Available from: http://fchabaud.free.fr/English/Publications/sha.pdf
9. US Department of Commerce, NIST. Secure Hash Standard. FIPS 180–2.
2002 Aug 1. Available from: http://csrc.nist.gov/publications/fips/fips180-

2/fips180-2.pdf
10. NIST. NIST Brief Comments on Recent Cryptanalytic Attacks on Secure
Hashing Functions and the Continued Security Provided by SHA–1[document
on the Internet]. Gaithersburg, Maryland: NIST; 2004 Aug 25 [cited 2011 Aug
23]. Available from: http://csrc.nist.gov/groups/ST/toolkit/documents/
shs/hash_standards_comments.pdf
11. Wang X, Yin YL, Yu H. Collision Search Attacks on SHA1. In: Shoup V,
editor. Advances in Cryptology – CRYPTO 2005: 25th Annual International
Cryptology Conference; 2005 Aug 14–18; Berlin: Springer; 2005. p. 17–36.
Available from: http://www.c4i.org/erehwon/shanote.pdf
12. Turan MS, Perlner R, Bassham LE, Burr W, Chang D, Chang S, Dworkin
MJ, Kelsey JM, Paul S, Peralta R. Status Report on the Second Round of the
SHA–3 Cryptographic Hash Algorithm Competition. NIST Interagency
Report 7764. 2011 Feb. Available from: http://csrc.nist.gov/groups/ST/
hash/sha-3/Round2/documents/Round2_Report_NISTIR_7764.pdf
13. Burr WE. The SHA–3 Finalists [document on the Internet]. Gaithersburg,
Maryland: NIST; 2010 Dec 9 [cited 2011 Aug 23]. Available from: http://
csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Email_
Announcing_Finalists.pdf
14. Gauravaram P, Knudsen LR, Matusiewicz K, Mendel F, Rechberger C,
Schläffer M, Thomsen SS. Grøstl – a SHA–3 candidate [monograph on the
Internet]. 2011 Mar 2 [cited 2011 Aug 23]. Available from: http://www.
groestl.info/Groestl.pdf
15. Schneier B. America’s Next Top Hash Function Begins [article on the
Internet]. New York City: Condé Nast; 2008 Nov 19 [cited 2011 Aug 23].
Available from: http://www.wired.com/politics/security/commentary/
securitymatters/2008/11/securitymatters_1120/
16. CC-BY. By Franganillo, J. Seguridad. Available from: http://www.
flickr.com/photos/franganillo/4458502219/
17. CC-BY-SA. Digital Signature diagram originally by Acdx. Available
from: http://en.wikipedia.org/wiki/File:Digital_Signature_diagram.svg

phase out SHA–1 in favour of SHA–2 by 2010 [10]. Then,
in February 2005, a similar weakness was discovered in
the original version of SHA–1 [11]. This, along with the
similarities between SHA–1 and SHA–2, prompted NIST to
announce the competition to choose SHA–3 in November
2007. They reasoned, “Although there is no specific reason
to believe that a practical attack on any of the SHA–2 family
of hash functions is imminent, a successful collision attack
[i.e. weakness in collision resistance] on an algorithm in the
SHA–2 family could have catastrophic effects for digital
signatures.” [6]

Selection of the finalists
The second round of the competition ended in December

2010 with the selection of five algorithms as finalists:
BLAKE, Grøstl, JH, Keccak and Skein [12]. NIST based
the decision on the security, performance (i.e. efficiency of
computer implementations), flexibility and simplicity of the
candidates [12], stating, “Security was our greatest concern
… . However, it is meaningless to discuss the security of
a hash function without relating security to performance”
[13]. The security of an algorithm was evaluated based
on arguments presented by its designers, feedback from
the community and NIST’s own cryptanalysis. Evaluation
involved estimating the susceptibility of the algorithm to
future attacks, known as its VHFXULW\�PDUJLQ, whilst taking
into consideration the quantity of cryptanalysis received [12].

As an example of one of the finalists, Grøstl is considered
here in more detail. In common with SHA–1 and SHA–2,

Grøstl uses a version of the 0HUNOH²'DPJnUG KDVK�IXQFWLRQ�
FRQVWUXFWLRQ� meaning that the message is split into fixed-length
blocks, which are combined one by one using a compression

IXQFWLRQ� which converts two fixed-length messages (denoted
here by m

1
 and m

2
) into a single message of the same fixed

length. The compression function used in Grøstl (denoted
here by I) incorporates two functions (denoted here by P
and Q) that essentially reorder the characters of a message,
and a method of combining messages called ELWZLVH�H[FOXVLYH�
OR, denoted ʇ, which adds the binary representations of
the messages without carries (for example, 10 ʇ 11 = 01).
The compression function is given by [14]:

I�P
1
�P

2
�� �3�P

1
 ʇ�m

2
) ʇ�4�P

2
) ʇ�m

1

NIST stated, “Grøstl was selected as a finalist because of
its well-understood design and solid performance, especially
in hardware. While Grøstl’s security margin is not ideal,
NIST views it in light of the extensive amount of cryptanalysis
that has been published, both on Grøstl itself and the …
structure on which Grøstl is based” [12].

Conclusion
When the competition was announced, NIST’s stated

aim was to “specify an unclassified, publicly disclosed
algorithm, which is available worldwide without royalties
or other intellectual property restrictions, and is capable of
protecting sensitive information for decades.” [6] While hash
functions remain one of the most poorly understood areas
of cryptography [15], leaving considerable uncertainty, the
enormous progress made in recent years and the strength of
the remaining candidates suggest a bright future for SHA–3,
in which NIST’s ambitious target may well be realised.

-DFRE�+LOWRQ� LV� D� WKLUG�\HDU� VWXGHQW� VWXG\LQJ�0DWKHPDWLFV� DW�
7ULQLW\�&ROOHJH

 The strength of the remaining
candidates suggests a bright

future for SHA-3

